Publications
Showing 35 publications
Rotational and Vibrational Spectra of the Pyridyl Radicals: A Coupled-Cluster Study
J. Phys. Chem. A. 2022, 126 (20), 3185–3197. http://dx.doi.org/10.1021/acs.jpca.2c01761.
Coupled Cluster Characterization of 1-, 2-, and 3-Pyrrolyl: Parameters for Vibrational and Rotational Spectroscopy
Journal of Physical Chemistry A. 2021, (125), 1257-1268. http://dx.doi.org/10.1021/acs.jpca.0c09833.
Ab Initio Study of Ground-state CS Photodissociation via Highly Excited Electronic States
The Astrophysical Journal. 2019, 882 (2), 86. http://dx.doi.org/10.3847/1538-4357/ab35ea.
Rotational Spectrum of the β-Cyanovinyl Radical: A Possible Astrophysical N-Heterocycle Precursor
The Journal of Physical Chemistry A . 2019, http://dx.doi.org/10.1021/acs.jpca.9b03798.
Oxygen-18 Isotopic Studies of HOOO and DOOO
J. Phys. Chem. A. 2017, 121 (33), 6296-6303. http://dx.doi.org/10.1021/acs.jpca.7b05380.
TRES survey of variable diffuse interstellar bands
Mon Not R Astron Soc. 2017, 470 (3), 2835-2844. http://dx.doi.org/10.1093/mnras/stx1398.
Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy
J. Chem. Phys.. 2016, 144 (12), 124201. http://dx.doi.org/10.1063/1.4944072.
Automated microwave double resonance spectroscopy: A tool to identify and characterize chemical compounds
J. Chem. Phys.. 2016, 144 (12), 124202. http://dx.doi.org/10.1063/1.4944089.
Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures
J. Chem. Phys.. 2016, 144 (12), 124304. http://dx.doi.org/10.1063/1.4944070.
Spontaneous and selective formation of HSNO, a crucial intermediate linking H2S and nitroso chemistries
J. Am. Chem. Soc.. 2016, 138 (36), 11441-11444. http://dx.doi.org/10.1021/jacs.6b05886.
An accurate molecular structure of phenyl, the simplest aryl radical
Angew. Chem. Int. Ed. Engl.. 2015, 54 (6), 1808-1811. http://dx.doi.org/10.1002/anie.201409896.
A laboratory study of C3H+ and the C3H radical in three new vibrationally excited 2Σ states using a pin-hole nozzle discharge source
Astrophys. J. Suppl. Ser.. 2015, 217 (1), 10. http://dx.doi.org/10.1088/0067-0049/217/1/10.
Spectroscopic and structural characterization of three silaisocyanides: exploring an elusive class of reactive molecules at high resolution
Chem. Commun.. 2015, 51 (56), 11305-11308. http://dx.doi.org/10.1039/C5CC02548F.
First time-dependent study of H2 and H3+ ortho-para chemistry in the diffuse interstellar medium: Observations meet theoretical predictions
The Astrophysical Journal. 2014, 787 (1), 44. http://dx.doi.org/10.1088/0004-637X/787/1/44.
Interaction between the broad-lined {Type Ic} supernova 2012ap and carriers of diffuse interstellar bands
Astrophys. J. Lett.. 2014, 782 (1), L5. http://dx.doi.org/10.1088/2041-8205/782/1/L5.
Gas-phase structure determination of dihydroxycarbene, one of the smallest stable singlet carbenes
Angew. Chem. Int. Ed. Engl.. 2014, 53 (16), 4089-4092. http://dx.doi.org/10.1002/anie.201311082.
On the symmetry and degeneracy of H3+
J. Phys. Chem. A. 2013, 117 (39), 9950-9958. http://dx.doi.org/10.1021/jp400080j.
Microwave detection of sulfoxylic acid (HOSOH)
J. Phys. Chem. A. 2013, 117 (17), 3608-3613. http://dx.doi.org/10.1021/jp400742q.
Detection and structure of HOON: Microwave spectroscopy reveals an O-O bond exceeding 1.9 Å
Science. 2013, 342 (6164), 1354-1357. http://dx.doi.org/10.1126/science.1244180.
Detection of two highly-stable silicon nitrides: HSiNSi and H3SiNSi
J. Phys. Chem. A. 2013, 117 (44), 11282-11288. http://dx.doi.org/10.1021/jp4068119.
Detection of nitrogen-protonated nitrous oxide (HNNO+) by rotational spectroscopy
J. Phys. Chem. A. 2013, 117 (39), 9968-9974. http://dx.doi.org/10.1021/jp4002065.
The simplest Criegee intermediate (H2C=O-O): Isotopic spectroscopy, equilibrium structure and possible formation from atmospheric lightning
J. Phys. Chem. Lett.. 2013, 4 (23), 4133-4139. http://dx.doi.org/10.1021/jz4023128.
Detection of E-cyanomethanimine toward Sagittarius B2N in the Green Bank Telescope Primos survey
Astrophys. J. Lett.. 2013, 765 (1), L10. http://dx.doi.org/10.1088/2041-8205/765/1/L10.
The ortho:para ratio of H3+ in laboratory and astrophysical plasmas.
Phil. Trans. R. Soc. A. 2012, 370 (1978), 5055-5065. http://dx.doi.org/10.1098/rsta.2012.0016.
Sub-Doppler mid-infrared spectroscopy of molecular ions
Chem. Phys. Lett.. 2012, 551 1-6. http://dx.doi.org/10.1016/j.cplett.2012.09.015.
The low-temperature nuclear spin equilibrium of H3+ in collisions with H2
Astrophys. J.. 2012, 759 (1), 21. http://dx.doi.org/10.1088/0004-637X/759/1/21.
Storage ring measurements of the dissociative recombination of H3+
Phil. Trans. R. Soc. A. 2012, 370 (1978), 5088-5100. http://dx.doi.org/10.1098/rsta.2012.0019.
On the ortho:para ratio of H3+ in diffuse molecular clouds
Astrophys. J.. 2011, 729 15. http://dx.doi.org/10.1088/0004-637X/729/1/15.
Nuclear spin dependence of the reaction of H3+ with H2. II. Experimental measurements.
The Journal of chemical physics. 2011, 134 (19), 194311. http://dx.doi.org/10.1063/1.3587246.
Note: A modular and robust continuous supersonic expansion discharge source
Rev. Sci. Instrum.. 2010, 81 (8), 086103. http://dx.doi.org/10.1063/1.3478019.
High-resolution storage-ring measurements of the dissociative recombination of H3+ using a supersonic expansion ion source
Phys. Rev. A. 2010, 82 (4), 042715. http://dx.doi.org/10.1103/PhysRevA.82.042715.
Communications: Development and characterization of a source of rotationally cold, enriched para-H3+
J. Chem. Phys.. 2010, 132 (8), 881103. http://dx.doi.org/10.1063/1.3322827.
Dissociative recombination of highly enriched para-H3+
J. Chem. Phys.. 2009, 130 (3), 31101. http://dx.doi.org/10.1063/1.3065970.
Comparative study of the photochemistry of the azidopyridine 1-oxides
J. Org. Chem.. 2008, 73 (9), 3441-3451. http://dx.doi.org/10.1021/jo8001936.
The photochemistry of 4-azidopyridine-1-oxide
J. Org. Chem.. 2006, 71 (24), 9023-9029. http://dx.doi.org/10.1021/jo061259o.